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Abstract

Numerous triviality results have been directed at a collection of views
that tie the probability of a conditional sentence to the conditional prob-
ability of the consequent on its antecedent. In this paper I argue that
this identification makes little sense if conditional sentences are context
sensitive. The best alternative, I argue, is a version of the thesis which
states that if your total evidence is E then the evidential probability of a
conditional evaluated in a context where E is salient is the probability of
the consequent given the antecedent. The biggest challenge to this thesis
comes from the ‘static’ triviality arguments developed by Stalnaker, and
Hajek and Hall. It is argued that these arguments rely on invalid princi-
ples of conditional logic and that the thesis is consistent with a reasonably
strong logic that does not include the principles in question.

Imagine that a coin has been selected at random from a bag containing three
20p coins, five 5p coins, six 1p coins, and four 2p coins.1 Given that no coin has
a better chance of being selected than any other, what is the probability that

(i) The selected coin is 5p if it’s silver?

(ii) The selected coin is 20p if it’s silver?

(iii) The selected coin is 1p if it’s copper?

(iv) The selected coin is 2p if it’s copper?

Intuitively the answer to these questions are: (i) 5
7 (ii) 3

7 (iii) 6
10 and (iv) 4

10 .
For example, to work out (i), i.e. to calculate the probability that if the coin
is silver it’s 5p, we consider the proportion of silver coins which are 5p coins.
Since five out of seven silver coins are 5p coins we conclude that 5

7 is the answer
to (i).

This simple account cannot be the whole story. For example not only does
the answer to questions (i-iv) depend on what your evidence is, but sometimes
which question is being asked depends on your evidence; indicative conditionals
are notoriously context sensitive.

1For those not familiar with British currency the first two kinds of coins are silver coloured
while the latter two are copper coloured.
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To see this we might consider a variant of the ‘Sly Pete’ examples described
by Gibbard [10]. Suppose that, unbeknownst to Alice, the coin is a 1p coin,
and, furthermore, she has been told that the selected coin is not a 20p coin.
Alice reasons, quite correctly, that

If it’s silver then it’s a 5p coin (1)

On the other hand Bob has been told only that the selected coin is not a 5p
coin. Bob reasons, again quite correctly, that

If it’s silver then it’s a 20p coin (2)

Many theorists agree that the propositions expressed by (1) and (2) in a single
context are consistent with one another only if it’s not possible for the selected
coin to have been silver.2 Assuming that Alice’s utterance of (1) and Bob’s
utterance of (2) both express true propositions, it follows that which propo-
sition is expressed by an utterance of (1) or (2) is sensitive to the context of
utterance. In particular, since the only relevant difference between the con-
text of Alice’s utterance and of Bob’s is the total evidence they have, it follows
that the proposition expressed by an utterance of (1) or (2) may depend on a
contextually salient piece of evidence.3

Bearing in mind that what question you are asking in (i-iv) may depend on
your current evidence, it is natural to ask: what general principle guides our
answers to questions (i-iv)? If the answers listed in (i-iv) are in fact correct then,
since they were calculated in a uniform manner, there surely should be some
general explanation of this. My suggestion is that if ones total evidence is Γ then
the evidential probability of a conditional that’s evaluated relative to evidence
Γ is identical to the conditional evidential probability of the consequent on the
antecedent. The conditional probability of B given A, written Pr(B | A), is

determined by the ratio Pr(A∧B)
Pr(A) .4

Although a simple and appealing theory of the epistemology of conditionals,
we shall see that many philosophers think that this style of explanation is incor-
rect, at least, if conditionals of this sort are to have truth conditions at all (see
[12] for a representative example.) This position, however, raises a whole host
of difficult questions. For example: if the answers just provided to (i-iv) are
correct then it is hard to imagine what other general principle could possibly
explain these facts. If, on the other hand, the answers I listed to (i-iv) are not
correct then what are the correct answers to these particular questions? In my

2The kind of possibility relevant here may depend on the kind of conditional; for indicatives
it is natural to say that a conditional is vacuously true whenever its antecedent is epistemically
impossible.

3I do not want to limit myself to the claim that an utterance of a conditional always
depends on the utterer’s evidence – it may be some amalgamation of the evidence of the
participants of the conversation or some other contextually salient piece of evidence.

4We might compare this to van Fraassen’s denial of ‘metaphysical realism’ in [38] in which
the interpretation of the conditional itself depends on the probability function you are eval-
uating it with respect to. However, unlike van Fraassen’s metaphysical claim, the contextual
dependence I am positing is quite respectable.
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opinion no-one has yet given a satisfactory answer to these questions which does
not invoke the relation between conditionals and conditional probabilities.

Let us write A →Γ B for the proposition expressed by an utterance of a
conditional relative to evidence Γ, whose antecedent expresses A and consequent
expresses B. We may state the principle outlined above more rigorously as
follows:

CP Pr(ψ | Γ ∪ {φ}) = Pr(φ→Γ ψ | Γ).

Here Γ ranges over sets of propositions which could, in some possible world,
be some agents total evidence. For now it will not matter if we allow Γ to
be any consistent set of propositions whatsoever. Pr ranges over rational ini-
tial probability functions, sometimes called ‘priors’ or ‘ur-priors’ – the rational
credences of a completely uninformed agent. There is nothing particularly mys-
terious about ur-priors – in order to have informed rational credences at all
there has to be credences it would be permissible to have if you had no evidence
whatsoever. I shall make the standard assumption that ur-priors are regular
in the sense that no possibility is ruled out by the function a priori – formally
speaking, that the function takes value 0 only on the inconsistent proposition.
The evidential probability of an agent at a given time can therefore be identi-
fied with the result of conditioning her ur-prior on her total evidence at that
time, Pr(· | Γ). This would not make sense if the agent is able to initially
rule out some of her later evidence a priori, which is the reason regularity must
be assumed. CP is compatible with the thesis that there is exactly one prior,
E, representing the evidential probability prior to investigation (see Williamson
[39].) Nothing I say in this paper relies on there being only one rational prior,
so my defence of the thesis is left at a general level. It is important to note
that sometimes ‘prior probability’, or ‘initial probability’, is used to mean the
credence of an informed rational agent before undergoing some episode – this
use should be carefully distinguished from ours.

A special case of CP, when Γ = ∅, is the claim

CP∅ Pr(ψ | φ) = Pr(φ→ ψ) for every rational ur-prior Pr.

Throughout this paper I shall adopt a shorthand of writing → to mean →∅.
Most of the literature on probabilities of conditionals focus on principles which
have the same form as CP∅, so the primary focus of this paper is CP∅ and not the
seemingly stronger CP.5 Once again, Pr ranges over rational initial probability
functions and Γ over possible evidence.

A number of principles have been proposed in the literature relating proba-
bilities of conditionals to conditional probabilities that look very much like CP∅.
In this tradition two have been widely discussed: Adams’ thesis that the asserta-
bility of a conditional is the conditional probability of the consequent on the
antecedent (see [1]) and Stalnaker’s thesis that the probability of a conditional
sentence is the conditional probability of the consequent on the antecedent (see

5However we show both principles to be consistent in the appendix.
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Stalnaker [35].) Van Fraassen, McGee and others discuss versions of these the-
ses with restrictions on what kinds of proposition can be substituted into the
principle. These usually involve sentences in some way – a proposition obeys the
relevant form of the principle only if it is expressed by a conditional that does
not have conditionals embedded in it in certain ways. CP and CP∅ are closely
related to some of these theses, but there are some important differences.

CP∅, for example, has the same form as Stalnaker’s thesis except there is
a restriction that Pr be an initial probability function. The restriction in CP∅
weakens Stalnaker’s thesis, telling us only about the conditional opinions of a
person with no evidence whatsoever. To allow Pr to be substituted for a prob-
ability function representing the evidential probability or credences of someone
with evidence would lead to a number of triviality results which we shall rehearse
in the next section. CP∅ on the other hand seems stronger than principles dis-
cussed by McGee and van Fraassen since there is no restrictions on iterated
conditionals.

As we have already mentioned there are a great number of impossibility
results aimed at principles like CP∅. My treatment of this literature shall there-
fore be far from comprehensive. The triviality results are often divided into
two kinds – the ‘dynamic’ kind, which show the identity must fail under certain
ways of updating probability functions, and ‘static’ results, which apply to a
single probability function but which make assumptions about the conditional
logic. In sections 1 and 2 I will address what I take to be the main versions of
these two problems: Lewis’s impossibility result [18], based on the assumption
that the range of probabilities to which CP∅ applies is closed under conditioning,
and Stalnaker’s impossibility result that appeals to his logic C2. The upshot of
these sections is that there is a very natural logic and semantics for conditionals
which, for all these results show, are compatible with CP∅ and CP. In section 3 I
prove a tenability result – I provide a model of CP∅ and CP within the semantic
framework motivated in the earlier sections.

Before we start let me introduce some notation. I shall always use Pr to
denote a rational ur-prior, i.e. a function representing a degree of confidence it
would be rational to have if you have no evidence whatsoever. I shall use Cr to
denote a rational credence function, i.e. a function which represents the degree
of confidence it is rational for an agent to have on her evidence. Γ will be used
to denote a set of propositions (or, equivalently, the conjunction of that set)
which could possibly be some agents total evidence and → shall always mean
→∅. When A is a proposition and Γ a set of propositions I shall write Pr(A | Γ)
for the conditional probability of A given the conjunction of the members of Γ.
I shall often abuse notation by omitting set brackets – for example by writing
Pr(A | B) instead of Pr(A | {B}), Pr(A | B,C) instead of Pr(A | {B,C}), and
so on.
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1 Stalnaker’s thesis

‘Stalnaker’s thesis’ is often understood as the claim that the credence one should
have in an indicative sentence, A→ B, is the same as the conditional credence
one should have in B given A, provided the latter is defined.

Stalnaker’s Thesis: For any rational credence function, Cr, Cr(B |
A) = Cr(A→ B) whenever Cr(A) > 0.

Stalnaker’s thesis has been the subject a number of disproofs beginning with
Lewis’s [18]. But before I turn to these arguments I want to discuss another more
basic problem with the thesis. Consideration of this problem should hopefully
lead us to reconsider the data supposedly in support of Stalnaker’s thesis, and
to a better formulation of the thesis which explains the data but is not subject
to disproof.

The problem is this. It is generally acknowledged among theorist’s work-
ing on conditionals that if indicative conditionals are to have truth conditions
which are not truth functional, they must be context sensitive (Stalnaker [32],
Gibbard [10], Nolan [24].) This is demonstrated, for instance, by the ‘Sly Pete’
example we outlined in (1) and (2) above. Which proposition is expressed by a
conditional sentence depends on the context in which it is uttered.

The probability of a conditional sentence is therefore context sensitive in the
following sense: the probability of a conditional sentence varies from context to
context as the proposition it expresses varies. Thus, for example, the probability
of the sentence ‘I will live until I’m eighty five’ is context sensitive – when it is
uttered by someone with a healthy lifestyle they express a proposition with a
greater probability than when it is uttered by an unhealthy person.

An indicative conditional, ‘if A then B’, can be context sensitive even when
neither A nor B are context sensitive. In such cases neither the probability of
‘A and B’ nor the probability of A are context sensitive (‘and’ is not usually a
source of context sensitivity.) So the number you get by dividing the probability
of the proposition expressed by ‘A and B’ in a certain context by the probability
of the proposition expressed by A in that context will be the same as the number
obtained by performing the same calculation relative to any other context. The
question ‘what is the conditional probability of B given A?’ has a quite definite,
context invariant answer whereas the question ‘what is the probability of if
A then B’ does not. We cannot therefore expect an arbitrary utterance of
Stalnaker’s thesis to be true: the number flanking one side of the identity will
change from context to context whereas the number flanking the other side
won’t.

This raises a serious question about what claim Stalnaker’s thesis is in-
tended to state. Perhaps it states that the relevant conditional probability is
the probability of the proposition expressed by the sentence ‘if A then B’ in
some particular context: the context Stalnaker found himself in when he wrote
[35], or at least the context we find ourselves in when we read [35]. On this
interpretation we should read Stalnaker’s thesis as making a very local claim
about Stalnaker’s own evidence when he wrote [35], namely that the probability
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of the proposition that is expressed by this use of ‘if A then B’ is the same as the
probability of the proposition expressed by B given the proposition expressed
by A in this context. I think it is clear that Stalnaker intended to capture
something much more general than an autobiographical fact about himself so it
is safe, I think, to disregard this possibility in what follows.

Stalnaker’s thesis is context sensitive – it states that a context sensitive
probability is the same as a context insensitive conditional probability – and
provides no sensible context at which to evaluate it. Considerations such as
these have lead me to think that Stalnaker’s thesis, at least as stated, cannot
the correct theory of the probabilities of conditional sentences. However, it also
seems obvious to me that our intuitions about the probabilities of conditionals
in particular contexts, including those reported in (i)-(iv), are in some way
connected to the corresponding conditional probability. The task, therefore, is
to isolate this truth about the way we evaluate conditionals from Stalnaker’s
thesis.

Let me now formulate two revisions of Stalnaker’s thesis in which the con-
text sensitivity of conditional sentences is explicitly taken into account. I shall
throughout assume that each context, c, provides a salient set of evidence, Γ,
and as explained earlier I shall use P →Γ Q for the proposition expressed in
c by a conditional whose antecedent expresses P in c and whose consequent
expresses Q in c. I shall also assume, following Lewis, that it is rational for an
agent to be Bayesian. That is, that if Pr is a rational initial probability, and
it is possible for Γ to be someone’s total evidence, then Pr(· | Γ) is a rational
credence function function – i.e. a credence it is rational for some possible agent
to have given their evidence. When we also assume that all rational people are
Bayesian we can effectively eliminate talk of rational credences and just talk of
functions of the form Pr(· | Γ) for rational ur-priors Pr and evidence Γ.

One principle that might do justice to the generality of Stalnaker’s thesis
says that Stalnaker’s thesis holds of every rational credence function (i.e. every
function of the form Pr(· | Γ)) in every context. That is:

ST Pr(ψ | Γ ∪ {φ}) = Pr(φ→Σ ψ | Γ) for every ur-prior Pr.

where Σ a set of propositions provided by any context you like and Γ any
set of propositions which could be an agents total evidence. In other words
the connective →Σ obeys the statement of Stalnaker’s thesis for any rational
credence, Pr(· | Γ).

It would of course be a miracle if Stalnaker’s thesis were true in all contexts.
Since the left hand side is sometimes context insensitive it could only be true
if the propositions expressed by the right hand side in different contexts all
happened to have the same probability for any agent. In my view the principle
that best accounts for the data Stalnaker’s thesis was supposed to account for
says that when your total evidence is Γ (and, therefore, your credences are of
the form Pr(· | Γ) for some ur-prior Pr) the probability of a conditional in
a context where the evidence Γ is salient is the conditional probability of the
consequent on the antecedent. In our formalism we get:
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CP Pr(ψ | Γ ∪ {φ}) = Pr(φ→Γ ψ | Γ).

Note that CP is entailed by ST (just set Σ = Γ) but is strictly weaker.
It is important to get clear what the data is that our answers to (i)-(iv) re-

port. In the context in which those questions are asked a single piece of evidence
is salient, the evidence of the subject, and we are evaluating these condition-
als by her credences, which are, given our Bayesian assumptions, a rational
ur-prior conditioned on this same piece of evidence. The answers reported to
(i)-(iv) therefore confirm instances of CP. CP only predicts a relation between
conditional credences and credences in conditionals when the agents evidence
and the contextually salient propositions are the same. Indeed, it is not hard to
see why most of the data purportedly in support of Stalnaker’s thesis are actu-
ally instances of the weaker principle CP: in most contexts the salient evidence
is the utterer’s evidence.

This example is also an instance of the stronger principle ST. In order to
evaluate the extra strength of ST we have to consider more contrived examples
where the contextual evidence and the subjects evidence are different. Indeed,
when we consider dynamic examples, in which the agents evidence changes, we
can actually generate counterexamples to ST.

Suppose you and I are sitting in the living room and we hear some kitchen
utensil being dropped on the floor in the next room. Now we don’t know what’s
been dropped, but we conjecture that

If the plate was dropped it broke.

I suggest that, not only is what was said in this context true, but that we are
fully justified in believing it given our evidence.

Suppose that we subsequently learn that the plate is not broken, although
we still remain ignorant about whether it was dropped. We now assert

If the plate was dropped it didn’t break.

since we know the plate didn’t break. This further utterance therefore also
expresses a true proposition that we are justified in believing. The seeming
inconsistency of these two beliefs is resolved once it is realised that they are
beliefs in different propositions; the context has changed between the utterance
of the first and second conditional. According to the standard possible worlds
theory (albeit one we will ultimately want to revise slightly) my utterance of the
first sentence is true only if the plate broke at the closest epistemically possible
worlds at which the plate was dropped. But as my epistemic situation changes,
so do the worlds which are deemed epistemically possible, and the proposition
expressed by this conditional changes accordingly. Once I have learnt that the
plate didn’t break all the worlds where the plate broke become epistemically
impossible, so the closest epistemically possible worlds where the plate was
dropped are ones where it didn’t break.

The way we evaluate the probability of conditional utterances as our evidence
changes is predicted perfectly by CP. For example, before we find out the plate
is fine we evaluate the probability of the relevant conditional (‘if the plate was
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dropped it broke’) and the conditional probability both as 1. After the evidence
is in we evaluate both the probability of the conditional and the conditional
probability as 0. That is, if A and B represent the antecedent and consequent
respectively and my evidence beforehand is Γ and my evidence afterwards is
Σ(= Γ ∪ {¬B}) then (a) Pr(A →Γ B | Γ) = Pr(B | Γ ∪ {A}) = 1 and (b)
Pr(A→Σ B | Σ) = Pr(B | Σ ∪ {A}) = 0.

This is all in accordance with CP but not ST. ST also forces us to accept the
identities (c) Pr(A →Γ B | Σ) = Pr(B | Σ ∪ {A}) and (d) Pr(A →Σ B | Γ) =
Pr(B | Γ ∪ {A}). But (a)+(d) and (c)+(b) are inconsistent6

1.1 Lewis’s triviality result

In [18] Lewis famously showed that no binary connective satisfies Stalnaker’s
thesis throughout a class of probability functions closed under conditioning un-
less the probability of a conditional is always the same as the probability of its
consequent in that class. We say that a class is closed under conditioning if
whenever Cr is in the class and Cr(A) > 0 then Cr(· | A) is also in the class.
The result doesn’t straightforwardly apply in this context since A→Γ B is being
treated as a ternary connective. However the result can be stated and discussed
in this framework in terms of the binary connective →∅, which we shorten to
→.7

Here we present Lewis’s triviality result in a way that does not require any-
thing as strong as Stalnaker’s thesis. It requires only the substantially weaker
thesis:

You may be conditionally certain in B given A only if you are certain that
if A then B.

While this principle sounds initially intuitive it suffers from the same defect as
Stalnaker’s thesis: its truth is context sensitive. For example, in the the last
section we argued that a principle like this can be false in a context in which
all the salient evidence is tautologous (so that we may formalise ‘if A then B’
with A → B) and where the agent in question has non-tautologous evidence.
Lewis’s result in effect establishes this fact directly.

Let us assume, then, that for any rational credence with Cr(φ) > 0, if
Cr(ψ | φ) = 1 then Cr(φ → ψ) = 1. Reformulating this explicitly in terms of
ur-priors gives us

1. If Pr(ψ | Γ ∪ {φ}) = 1 then Pr(φ → ψ | Γ) = 1 for every rational initial
probability Pr and evidence Γ provided Pr(φ | Γ) > 0.

6The former implying you can change your credence in A→Σ B from 1 to 0 via updating
the latter implying a change of 0 to 1 in A→Γ B.

7There is a further reason why we focus on →∅ in what follows: in our eventual semantics
A →{E} B is equivalent to A ∧ E → B so we can in fact take the binary connective →∅ as
primitive.
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Note that (1) entails the principle (*): if Pr(ψ | Γ ∪ {φ}) = 0 then Pr(φ→ ψ |
Γ) = 0 when Pr(φ | Γ) > 0. The argument makes use of the uncontroversial
inference from φ→ ¬ψ to ¬(φ→ ψ) when φ is (epistemically) possible.8

Now we make two simple observations. Trivially Pr(B | A,B) = 1 so it
follows by (1) that Pr(A → B | B) = 1. Equally trivially Pr(B | A,¬B) = 0,
so it follows that Pr(A→ B | ¬B) = 0 by (*). Therefore:

i. Pr(A → B) = Pr(A → B | B)Pr(B) + Pr(A → B | ¬B)Pr(¬B) by
probability theory.

ii. Pr(A→ B | B)Pr(B) +Pr(A→ B | ¬B)Pr(¬B) = 1.P r(B) + 0.P r(¬B)
by the two observations above.

iii. 1.P r(B) + 0.P r(¬B) = Pr(B)

This result is disastrous: we have shown that if 1 is true the probability of
any conditional is the same as the probability of its consequent. Any theory of
probabilities of conditionals that commits us to 1 has to go.

What can we conclude about our two theories, ST and CP? Both CP and ST
have special consequences for the connective →∅, which for ease of use I shall
name ST∅ and CP∅:

ST∅ Pr(ψ | Γ ∪ {φ}) = Pr(φ→ ψ | Γ) for every ur-prior Pr.

CP∅ Pr(ψ | φ) = Pr(φ→ ψ) for every ur-prior Pr.

Note the difference between ST∅ and CP∅. ST∅ applies to conditional ur-priors
– to the credences of an informed agent – whereas CP∅ only applies to ur-
priors. This marks a crucial difference between the two theses. CP∅ places a
basic constraint on the rationality of your initial credences – provided you obey
this constraint you will continue to be rational no matter what you update on.
ST∅, on the other hand, tries to constrain your credences as you update by
conditioning, and turns out to be inconsistent.9

Lewis’s result is a problem for ST∅ but not for CP∅. It is easy to see that
ST∅ has 1 as a consequence whereas CP∅ only has the weaker principle 2.

1. If Pr(ψ | Γ ∪ {φ}) = 1 then Pr(φ → ψ | Γ) = 1 for every rational initial
probability Pr and evidence Γ.

2. If Pr(ψ | φ) = 1 then Pr(φ→ ψ) = 1 for every rational initial probability
Pr.

8Suppose Pr(φ | Γ) > 0 (so φ is epistemically possible). Then Pr(ψ | Γ ∪ {φ}) = 0, so
Pr(¬ψ | Γ ∪ {φ}) = 1. By 1 it follows that Pr(φ → ¬ψ | Γ) = 1. By the inference from
φ→ ¬ψ to ¬(φ→ ψ), Pr(¬(φ→ ψ) | Γ) = 1 and finally Pr(φ→ ψ | Γ) = 0 as required.

9Unfortunately it appears to be quite easy to mistake a principle formulated in terms of
ur-priors for one formulated in terms of a rational agents current credences. For example,
a common mistake regarding the Principal Principle, according to Meacham, ‘replaces the
reasonable initial credence function that appears in Lewis’ original formulation with a subject’s
current credence function’ ([23]) The mistake is just as disastrous in this case and leads to
inconsistencies. The Principal Principle, like CP∅, are in some sense a priori constraints and
should not rule out an agents recieving this or that piece of empirical evidence.
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To put it in Lewis’s original language, the range of probabilities CP∅ and 2
apply to are not closed under conditioning. They apply only to initial evidential
probability functions representing permissible evidential probabilities of agents
with no evidence at all. If the initial probability distributions were not regular
then they would represent the possibility of an agent who has been able to rule
out some contingent or empirical hypothesis a priori without having received
any evidence. To rule out an emprical hypothesis without evidence is irrational.
No set of regular probability functions is closed under conditioning since the
result of conditioning a probability function on a contingent proposition is never
regular.

1.2 Conditional proof

According to the theory we endorse certain modes of inference are acceptable for
people who have no evidence which are unacceptable for people who have certain
evidence. This is seen, for example, from the fact that we endorse 2 but not 1
(and CP∅ but not ST∅.) When one has no evidence at all one should evaluate the
probability of A→∅ B as the same as the probability of B on A, but once further
evidence E is in this connection may not hold (although a similar connection
between the conditional probability and the probability of A→{E} B will hold.)
Other writers have suggested that to correctly capture conditional reasoning
we must keeping track of which background suppositions or which background
evidence is in place (see for example McGee [22] and Humberstone [14] §7.16.)
For example, conditional logics typically distinguish between conditional proof
with side premises and conditional proof without, usually treating only the latter
at valid. In this section I show how this phenomenon is closely connected with
the conditional epistemology defended here.

Let’s start by highlighting an analogy between the two probabilistic princi-
ples we have been discussing, namely:

1. If Pr(ψ | Γ ∪ {φ}) = 1 then Pr(φ → ψ | Γ) = 1 for every rational initial
probability Pr and evidence Γ.

2. If Pr(ψ | φ) = 1 then Pr(φ→ ψ) = 1 for every rational initial probability
Pr.

and two logical principles which state versions of conditional proof, with and
without side premises:

1′. If Γ, φ ` ψ then Γ ` φ→ ψ

2′. If φ ` ψ then ` φ→ ψ

1′ says that if you can validly infer ψ from Γ ∪ {φ} then you can validly infer
φ→ ψ from Γ, whereas 1 says that if you’re conditionally certain in ψ given φ
against background evidence Γ, you should be certain in φ→ ψ with background
Γ. 2′ says that if you can validly infer ψ from φ you can always validly infer
φ→ ψ from no assumptions whereas 2 says that if you are conditionally certain
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in ψ given φ, when you have no evidence, you should be certain in φ→ ψ. 2 and
2′ are special cases of 1 and 1′ respectively (let Γ = ∅.) It is very natural to think
that these two pairs of principles are closely related. For example, if 1 is true
then 1′ represents a good form of argument in the following sense: if your initial
credences recommend being fully confident in ψ conditional on the premises
Γ ∪ {φ} then they will recommend being fully confident in φ → ψ conditional
on Γ. Similarly if 2 is true then 2′ also represents a good form of inference in
the sense that if you’re initial credences recommend being conditionally certain
in ψ given φ they will recommend being certain that φ→ ψ simpliciter.

What about the converse connection? For example, if 2′ is a valid form of
inference must 2 be true? The matter is less straightforward, but I think an
argument can be made. Suppose that Pr is a rational initial probability and
Pr(ψ | φ) = 1. It follows by calculation that Pr(φ ∧ ¬ψ) = 0. Since Pr is
regular, in the sense that it assigns every possibility a non-zero value, it follows
that φ ∧ ¬ψ is not a genuine possibility, i.e. φ ` ψ. By 2′ it follows that φ→ ψ
is valid, so Pr(φ → ψ) = 1.10 A similar argument could be made for 1 on the
basis of 1′.

There is an interesting difference between 1′ and 2′, however, which sheds
some light on the difference between 1 and 2. 2′ is valid and 1′ is not. The
case for the validity of 2′ is both intuitive and evidenced by the fact that it is
validated on all the standard possible world semantics for conditionals. Putting
aside irrelevant differences between the possible world theories, they all say, give
or take, that a conditional is true at a world if the consequent is true at the
closest world (or worlds) to it at which the antecedent is true. So if every φ
world is a ψ world then, for any world, the closest φ world to it is a ψ world.

1′, however, is invalid. The case for this is again supported by intuition and
the possible world semantics. We’ll begin with the latter. Note that in any
model, φ and ψ entail φ (i.e. every φ and ψ world is a φ world) so if 1 were a
sound rule we should have that ψ entails φ→ ψ. This is not so; there could be
a ψ world which is not a φ world, and where the closest φ world is not ψ either.
Intuitive counter examples to 1 abound. For example note that:

I will wake up at 7am on Saturday, I drink a bottle of vodka on Friday
night; therefore I will wake up at 7am on Saturday

is a valid inference, whereas the following is patently false:

I will wake up at 7am on Saturday; therefore if I drink a bottle of vodka
on Friday night I will wake up at 7am on Saturday.

I may well wake up at 7am on Saturday, but not if I drink a bottle of vodka the
night before. The presence of side premises in 1′ therefore marks an important
difference between 1′ and 2′.

10The potentially controversial step is where we inferred that φ ` ψ from the fact that
φ ∧ ¬ψ is false in all possibilities. I have tacitly assumed that a rational initial probability
is one which assigns every logical possibility a non-zero value. If this is assumed is then 2′

entails 2 (and similarly 1′ entails 1.)
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There is therefore a principled reason why we should accept 2 and reject 1.
2, unlike 1, is in fact guaranteed by general norms governing the way in which
our conditional confidence is regulated by validity: as we have argued 2′ is valid,
and that if 2′ is valid then 2 is true. On the other hand 1 appears to inherit the
counterexamples to 1′: I should not be fully confident, even conditional on the
supposition that I wake up at 7 on Saturday, that I’ll wake up at 7 on Saturday
if I drink a bottle of vodka the night before.11 This directly contradicts 1 since
my conditional confidence that I’ll wake up at 7 given I’ll wake up at 7 and I
drink a bottle vodka is, of course, 1.

However, notice that there is a second reading of the above counterexample
which is slightly harder to get, but which can be accounted for by taking the
context sensitivity of conditional statements into account. Suppose, now, that
the fact that I will wake up at 7am on Saturday is really part of my evidence
– let’s suppose some completely reliable oracle has told me that I’d wake up at
7. Now it seems OK to say ‘look, the oracle told me that I’d wake up at 7. So,
whatever happens tonight, even if I drink a bottle of vodka, I’ll wake up at 7.’
If we add the proposition that I wake up at 7 on Saturday to the evidence we
evaluate the conditional with respect to we can infer that if I drink a bottle of
vodka on Friday, I’ll wake up at 7 tomorrow, in the contextually salient sense
of ‘if’. In our current notation we can capture this form of reasoning by the
following version of conditional proof:

3′ If Γ, φ ` ψ then Γ ` φ→Γ ψ

This version of conditional proof is, as with 1′ 2′, closely connected to a proba-
bilistic principle, namely

3. If Pr(ψ | Γ ∪ {φ}) = 1 then Pr(φ→Γ ψ | Γ) = 1 for every rational initial
probability Pr.

3 is a consequence of CP.
Conditional proof is also closely related to the infamous ‘or-to-if’ argument.

Consider the following instance of 3′

φ ∨ ψ,¬φ ` ψ

Therefore φ ∨ ψ ` ¬φ→φ∨ψ ψ

The conclusion sequent is an instance of ‘or-to-if’ reasoning, and is often moti-
vated by examples such as the following: either the butler did it or the gardener
did; therefore if the butler did not do it the gardener did. Traditional formula-
tions of the ‘or-to-if’ argument employ a binary connective, which, on the basis
of this inference, can be shown to be equivalent to the material conditional (as-
suming also modus ponens.) However, if we accept that the conclusion of this

11Although I concede, and predict, that this judgment is context sensitive. In a context in
which I somehow have knowledge that I’ll wake up at 7 I am much less inclined to assign a
low conditional probability to this sentence.
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argument is context sensitive in the way I have suggested, the current formu-
lation seems to fair better, and indeed does not collapse the conditional into
material implication.12

In short, then, we see that CP∅ evades Lewis’s results due to its restriction to
ur-priors. However, we have argued that this restriction is not ad hoc: it is part
of a general theory (CP) for evaluating probabilities of context sensitive condi-
tional statements, and is also motivated by accepted principles of conditional
logic in a way in which the unrestricted version (ST∅) isn’t.

Unfortunately, however, there are other triviality results which do not rely
on 1. These use the logic of conditionals to cause problems, and it is to these I
now turn.

2 Stalnaker’s impossibility result

In [33] Stalnaker, rejecting the thesis he once held, provided another triviality
result which did not rely on Lewis’s closure assumption. This is a ‘static’ trivial-
ity result: unlike Lewis’s result, which required Stalnaker’s thesis to continue to
hold under various ways of updating probabilities, Stalnaker’s argument shows
that no single probability function can satisfy the thesis. Unlike Lewis’s result,
this kind of argument seems to be directly applicable to CP∅. However this
argument also relies on contentious principles of conditional logic.

Stalnaker’s argument was later refined by Hajek and Hall in [12] who isolated
principles of Stalnaker’s C2 that are sufficient for the proof. One of these prin-
ciples represents a weakening of transitivity, ((φ→ ψ) ∧ (ψ → φ) ∧ (ψ → χ)) ⊃
(φ → χ), which is often referred to as CSO. Here → represents the indicative
conditional and ⊃ the material conditional.

Indeed, CSO appears to be the primary culprit for this result, which can be
seen from inspecting the assumptions of Hajek and Hall’s result.

Theorem 2.1. Suppose that CP∅ holds and that the following principles are
valid

MP φ, φ→ ψ ` ψ

CC φ→ ψ, φ→ χ ` φ→ (ψ ∧ χ)

CSO ((φ→ ψ) ∧ (ψ → φ) ∧ (ψ → χ)) ⊃ (φ→ χ)

Then no more than two disjoint consistent propositions have positive probability
for any rational ur-prior.

For the argument see [12]. I take it that modus ponens is non-negotiable13

and that CC is equally self-evident. So the upshot of theorem 2.1 is clear: either

12For the origin of this sort of response to the ‘or-to-if’ argument see Stalnaker [32], who
endorses ‘or-to-if’ speech’s as pragmatically justified, albeit formally invalid. Here we give
‘or-to-if’ its due, as a formally valid inference by explicitly treating the conditional as a three
place relation.

13Although for scepticism about modus ponens see McGee [21].
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CP∅ goes or CSO goes. The case against CP∅ is therefore only as good as the
case for weakened transitivity.

What does weakened transitivity have to recommend itself? It is a bit hard
to say what its intuitive rationale is without appealing to the transitivity of →.
(That CSO is a weakening of the transitivity of→ can be seen by deleting ψ → φ
from the antecedent.) This would be a bad basis on which to justify weakened
transitivity since transitivity is itself considered to be invalid by many, including
Stalnaker himself (see [31].) For example, suppose we know that an experiment
involving a match has taken place, although we do not know whether the match
was struck. We agree that if the match was struck then it lit. Furthermore, we
clearly agree that if the match was soaked in water and struck, it was struck,
since the antecedent entails the consequent. But transitivity would allow us to
infer that if the match was soaked in water and struck then it lit. In other words
transitivity allows us to commit the error of strengthening the antecedent.14

Weakened transitivity does not allow us to prove antecedent strengthening
(henceforth AS) although it does allow us to infer the following weakened version
of antecedent strengthening, VLAS (‘very limited antecedent strengthening’)15

AS (φ→ χ) ⊃ ((φ ∧ ψ)→ χ)

VLAS ((φ→ ψ) ∧ (φ→ χ)) ⊃ ((φ ∧ ψ)→ χ)

indeed under certain assumptions CSO and VLAS are equivalent.16 However, in
the logic we ultimately endorse VLAS is strictly weaker than CSO. With this in
mind it is worth noting that Hajek and Hall’s theorem still goes through if we
substitute VLAS for CSO (see theorem 3.5 in section 3.2 below.)

However one might think that VLAS has intuitive appeal of its own, appeal
that does not derive from antecedent strengthening, and it is on this basis that
we can run a triviality result. In the following subsections I shall make a case for
the view that neither VLAS nor CSO are valid on the basis of independent, non-
probabilistic considerations. We shall also show that, while CSO and VLAS are
validated in many standard possible world semantics (see Lewis [17], Stalnaker
[31], Pollock [26]), which appeal to what happens at the closest antecedent-
worlds to the world of evaluation, simple variants of these these proposals seem
to be able to accommodate the counterexamples without detracting much from
the general theory.

We should think of the following counterexamples as prima facie cases
against CSO and related principles. The purpose of this paper, however, is

14Stalnaker also provides direct counterexamples to transitivity which do not involve an-
tecedent strengthening.

15VLAS is equivalent, given some uncontroversial conditional logic, to ((φ → (ψ ∧ χ)) ⊃
((φ ∧ ψ)→ χ) which is sometimes easier to evaluate in practice.

16Thanks both to Cian Dorr and Lee Walters for pointing out the connection between VLAS
and CSO to me. The inference from CSO to VLAS is provable in the weak conditional logic
CK+ID, outlined in section 2.4. To get from VLAS to CSO we also need the logic L1 (also
presented in §2.4) and the principle C2, (A → ⊥) ⊃ (AB → ⊥), for dealing with vacuously
true conditionals.
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to defend the tenability of CP, not to conclusively refute CSO, and I shall ac-
cordingly not spend much time considering potential responses one could make
to these counterexamples. My purpose is to rather motivate alternatives to
Stalnaker’s semantics.

2.1 Counterexamples in the literature

Counterexamples to CSO are often formulated in terms of subjunctive condi-
tionals as opposed to indicatives. While I am content to conclude that CSO is
invalid if invalid in either mood, indicative or subjunctive, this move is needlessly
contentious. Fortunately the examples I consider are often just as compelling
when suitable changes to the tenses are made (although I shall leave these mod-
ifications to the reader and discuss the original subjunctive counterexamples.)

The earliest counterexample to CSO I know of is due to Pavel Tichý (see
[36].) Tichý’s original example took the form of a circuit involving three relays
A, B and C, set up in such a way that if A is on at some point, B will be on
at some point, if B is on at some point or other A will be on at some point, if
A is on at some point C will be on at some point, but, in contrast to CSO, C
will not necessarily be on if A is on at some point. In discussing this example
Stalnaker presents the following variant of Tichý’s counterexample:

The crown jewels are on an open display platform surrounded by
electric eye sensors. A cat is sleeping on the platform, near the
jewels but outside the circle of electric eyes. If anyone, human or
cat, were to reach into the dispay area an alarm would sound. If the
alarm were to sound, it would wake up the cat. If the cat were to
wake up, he would cross into the display area, setting off the alarm.
That is, the following three counterfactuals are all true: if the alarm
had sounded the cat would have woken up; if the cat had woken up,
the alarm would have sounded; if the cat had woken up, he would
have set off the alarm. According to the first of the two inference
patterns described above, it follows from these premises that if the
alarm had sounded it would have been the cat who set it off. But
this shouldn’t follow. It seems compatible with the story that if the
alarm had sounded, it would have been a burglar, rather than the
cat, who was responsible.

Similar examples can be formulated using indicative conditionals.
Around this time there was also disatisfaction with certain aspects of the

Stalnaker-Lewis theory centering around variants of VLAS. For example Pol-
lock ([27] p254.) provides a counterexample to the seemingly stronger principle
A→ B,¬(A→ ¬C) ` (A∧C)→ B; however, in the presence of conditional ex-
cluded middle it is equivalent to VLAS. Thus, under this assumption, Pollock’s
counterexample provide reasons to reject VLAS and the stronger CSO.

More recently counterexamples to CSO and VLAS have been proposed by
Maartensson [20], Tooley [37] and Ahmed [2]. The examples are of a slightly
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different nature, although I shall limit my discussion to Ahmed’s counterexam-
ple:

A and B are assassins; C, D and E are prominent statesmen of the
northern Republic (formerly Kingdom) of Zembla. A has orders to
shoot C and D. She is an excellent shot and very determined. So
unless the police catch her before she reaches C nothing will stop
her from shooting C; once she has shot C nothing will stop her from
shooting D unless somebody else has got to him first. B has orders
to shoot D and E. He too is an excellent shot and very determined.
So unless the police catch him before he reaches D nothing will stop
him from shooting D; once he has shot D nothing will stop him from
shooting E. As it happens neither A nor B gets to shoot anyone
because independent policemen catch them: A is caught trying to
enter Zembla from the east and B is caught trying to enter from the
west. There is no other threat to the life of C, D or E. – Ahmed,
[2]

To keep track of things Ahmed uses C, D and E (now understood as propo-
sitional letters) to stand for the proposition that somebody shot C, D or E
respectively, and he uses A and B to stand for the proposition that A (B)
evaded capture. He then claims that C → (C ∧D), i.e. that if somebody shot
C then somebody shot C and somebody shot D. We know that only A could
have shot C and that if A shot C nothing could prevent him from going on to
shoot D.

Ahmed then continues to argue that C → ¬E and (C ∧ D) → C. These
two claims are true for fairly uninteresting reasons. The former because the
consequent is true, nobody shot E, and whether or not C get’s shot is completely
irrelevant in the current set up as to whether E gets shot. The latter claim
should be a logical truth in any sensible theory of conditionals. So by CSO we
should be able to infer (C ∧ D) → ¬E; that is, if C and D got shot then E
didn’t. But this is not true, it seems, since although presumably A shot C in
this counterfactual scenario it is not determined, given the set up, whether, if
C and D had been shot, A or B would do the shooting of D. If it had been B
then E would have been shot too.

2.2 Further counterexamples: subjunctives

Before we move on let me outline two more counterexamples to CSO and VLAS
which, I hope, will demonstrate how Stalnaker’s semantics fails and how it can
be modified. In order to state his formal semantics (which we shall describe
shortly) Stalnaker introduces a selection function, f(A, x), mapping a proposi-
tion, A, and a world, x, to another world. Neutrally speaking, f(A, x) represents
the world that would have obtained (instead of x) had A obtained. Somewhat
less neutrally, Stalnaker identifies f(A, x) with the closest world to x at which
A obtains, on a certain technical understanding of ‘close’. On this second in-
terpretation it follows that if f(A, x) is a B-world (a world in which B obtains)
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Figure 1: Two balls A and B balanced on opposing slopes.

and f(B, x) is an A-world then f(A, x) = f(B, x) – if the closest A-world is a
B-world and the closest B-world is an A-world then the closest A-world is the
closest B-world. It is exactly this property of Stalnaker’s selection function that
ensures the validity of CSO in the formal semantics.

But now consider the set up in figure 1. Here is how things would have
gone if A had toppled: A would have rolled down the slope, up the opposite
slope toppling B from its perch. Here is how things would have gone if B had
toppled: B would have rolled down the slope, up the opposite slope toppling A
from its perch. These are clearly two different scenarios. In actual fact neither
A nor B topple. If @ is the actual world and f(X,@) the way things would
have gone had X obtained then, although the world that would have obtained
had A toppled is a world where B topples, and vice versa, the way things would
have gone had A toppled is clearly not the same as the way things would have
gone had B toppled.

We can turn this into a counterexample to CSO as follows. Suppose that A
and B are positioned on two pressure plates. If the pressure is released on A’s
plate then the mechanism on B’s plate will be immediately deactivated and a
green light will come on and remain on. If the pressure on B’s plate is released
then the mechanism on A’s plate will immediately deactivated and a red light
will come on and remain on. It is impossible for both the green and red light
to be on at once since one of the two mechanisms will be deactivated before
the other, depending on which ball topples first. Now suppose we can see that
neither ball has toppled. It seems to me that it would be perfectly felicitous to
go on and assert the following:

1. If A were to topple, B would topple.

2. If B were to topple, A would topple.

3. If A were to topple the green light would come on.

4. If B were to topple the red light would come on.
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Yet according to CSO (1-4) are inconsistent. From 1-3 we can infer that if B
were to topple the green, and not the red, light would come on, contradicting
4.17

Let me first concede that it is possible to prime the audience to read 3 (or,
indeed, 4) in a way that makes it less acceptable. I might say to you: ‘look,
when A topples because it’s hit by B the green light will not come on because its
mechanism has been deactivated. So if A were to topple, the green light might
not come on (because B toppled first) so we should not accept 3.’ This argument
relies on a controversial connection between ‘might’ and ‘would’ counterfactuals,
but an assumption I am willing to grant for the sake of argument.

The kind of reasoning described above is sometimes called ‘backtracking’.
I am inclined to agree with Lewis [19], and many after him, that the contexts
in which backtracking is legitimate are somewhat special contexts. As Lewis
puts it: ‘A counterfactual saying that the past would be different if the present
were somehow different may come out true under the special resolution of its
vagueness, but false under the standard resolution.’ The same distinction applies
to the ‘might’ counterfactual we used in the above argument.18

It must be stressed, however, that our case against CSO does not depend on
the possibility of contexts in which backtracking is legitimate. We only need
1-4 to be simultaneously true in one context to complete our case against CSO,
which deems them jointly inconsistent. It does not matter if there are also
contexts in which some or all of 1-4 are false.

What of VLAS? Here we consider a slightly different set up. The balls in
figures 2 and 3 are positioned as follows. X is balanced extremely delicately so
that any movement would cause it to fall down the slope. In the first set up
(fig. 2) X would just hit the barrier at A and in the second it would roll back
up the hill and hit Y knocking it down the right side of the hill.

In both examples X and Y are perfectly well balanced and will remain
stationary unless there is external disturbance of the system. Nonetheless, one
can consider questions about what would have happened if X or Y moves, or
what will happen (since we are also interested in indicatives) if X or Y moves.
I am going to focus on the questions of what will happen

(a) If X topples?

(b) If X and Y topples?

In figure 2 question (a) and (b) are completely different questions with different
answers. However once the barrier is removed, according to VLAS, what would

17There is a question, which I cannot fully address here, as to what role tense is playing in
these examples. This issue could be circumvented altogether if one could replace 1 with ‘if A
were to topple at some point, B would topple at some point’, and make similar substitutions
in 2-4, without disturbing the truth values of 1-4. It is unclear to me whether the resulting
fours sentences would all be true.

18Indeed, according to the logics containing conditional excluded middle there is little dif-
ference between ‘would’ and ‘might’ counterfactuals assuming, as we did above, that they are
duals of one another.
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Figure 2: X and Y are balanced with barrier at A.

Figure 3: X and Y are balanced, but if X moves Y will fall right.

have happened if X and Y had moved is the same as what would have happened
if X had toppled. I shall argue that this is intuitively wrong.

In the first example, whether either ball moves is independent of whether
the other does. This manifests itself in the failure of the following conditional:

1. If X were to topple, Y would topple.

In the second example, however, the barrier is not in place. So, unlike in figure
1, Y will topple if X topples, but only, it seems, because X topples. The
conditional 1 can be split up into two cases:

2. If X were to topple, Y would topple and fall right.

3. If X were to topple, Y would topple and fall left.

Concerning the second example we should assert 2 and deny 3. (In logics con-
taining CEM 1 is just the disjunction of 2 and 3.)

The upshot is that in the first example we should deny both 2 and 3. But,
the intuition goes, removing the barrier should change our judgement about 2,
we should assert it, but not about 3 which we should continue to deny.
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Now let us turn to question (b): what happens if X and Y topple? In figure
1 there are two possibilities: X has to fall right, but Y could fall either left or
right. Thus we shouldn’t assert either 4 or 519:

4. If X and Y were to topple, Y would fall right.

5. If X and Y were to topple, Y would fall left.

What happens to 4 and 5 if we remove the barrier? As far as I can see,
removing the barrier makes no difference as to whether the two possibilities
described above exist. So if X and Y both topple, then as before, Y could fall
either left or right and we should not assert either 4 or 5.

This is problematic for VLAS. In the world represented by figure 3 we should
adopt the following pattern of responses.

Assert: if X were to topple, Y would topple.

Assert: if X were to topple, Y would fall right.

Do not assert: if X and Y were to topple, Y would fall right.

2.3 Further counterexamples: indicatives

To what extent do these counterexamples generalise to indicative conditionals?
There is one straightforward sense in which they they do. People have often
noted that if I say now ‘if A topples, B will topple’ you can later report my
speech by saying ‘[XXXX] said that if A had toppled, B would have toppled’
(see Dudman [8].) Thus subjunctive conditionals often express in the past tense
what a ‘forward looking’ indicative conditional (i.e. a conditional containing the
future modal ‘will’ in the consequent) can be used to express at an earlier time.
Thus if in figure 1 what I say now with the sentences 1-4 can be said at an earlier
time by uttering appropriate indicative conditionals then the counterexample
clearly generalises to the indicative case.

Another question that is worth investigating is whether these counterexam-
ples generalise to bare indicatives – indicatives with no visible modal in the
consequent. Suppose that we know that a system was set up as in figure 1 an
hour ago, but we don’t know how the state of the system has changed since.
Then it seems that the following four conditionals may, for all I know, be all
true:

1. If A toppled, B toppled.

2. If B toppled, A toppled.

3. If A toppled the green light came on.

19The reason that we should not assert either 4 or 5 here differs depending on whether you
accept CEM or not. For Lewis, a paradigm CEM denier, both 4 and 5 would be false. For
propenents of CEM exactly one of 4 and 5 is true, but we typically cannot know which; in
this case we should not assert 4 or 5 because do not know which is true.
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4. If B toppled the red light came on.

However, according to CSO, these are inconsistent and therefore cannot, for all
I know, be simultaneously true. A similar modification can be made to the
counterexample to the subjunctive variant of VLAS.

The consistency of 1-4 is one thing, whether they are ever jointly assertable
is another. Here is an argument that 1-4 are jointly assertable only if you know
their antecedents to be false:

I cannot assert 3 unless I can rule out the possibility that A toppled
and the green light didn’t come on.20 But I know that any world
where B toppled initially, later colliding with A, is a world where A
toppled and the green light doesn’t come on, so I can rule out that
B toppled first. By symmetrical reasoning I know that I can assert
4 only if I can rule out the possibility that A toppled first. So I may
assert 3 and 4 only if I know that neither A nor B toppled.

However if the antecedents of 1-4 are known to be false this ruins the example as
indicatives whose antecedents are known to be false are not usually assertable.21

This problem does not generalise to subjunctives: it is perfectly fine to as-
sert, for example, that if A had toppled B would have toppled, even when you
know that A hasn’t toppled. The most this proves is that the pragmatics of in-
dicative and subjunctive conditionals are different. Indeed I want to go further
and suggest that although the indicative forms of CSO and VLAS are not se-
mantically valid the latter (and possibly the former) state important constraints
on the kind of inferences that are pragmatically appropriate. Say that an infer-
ence from sentences A1 . . . An to the sentence B is pragmatically appropriate iff,
whatever the context of utterance, the conjunction of A1 . . . An is less probable
for the agent of that context than B is in that context. It follows that if the
inference from A1 . . . An to B is pragmatically appropriate then A1 . . . An,¬B
cannot all have probability 1 in a context of utterance.

Why is VLAS a pragmatically appropriate inference? Well, suppose that
in the current context my total evidence is Γ. If, in this context, the salient
evidence is simply my total evidence then the premisses of VLAS can be repre-
sented in our notation by (A →Γ B) ∧ (A →Γ C). By a fairly uncontroversial
piece of conditional logic this is equiprobable with (A→Γ BC). If my ur-prior
is Pr we can represent my present credence with Pr(A →Γ BC | Γ), which is
Pr(BC | Γ ∪ {A}) by CP, provided Pr(A | Γ) > 0. This is less than or equal
to Pr(C | Γ ∪ {A,B}) by calculation which is just Pr(AB →Γ C | Γ) by CP
again.22

20I cannot assert that if A toppled then B toppled unless I know it. So every epistemically
possible world is a world where B toppled if A did, and thus, there are no epistemically
possible worlds where A toppled and B didn’t.

21Sometimes it is possible to read conditionals whose antecedents are known to be false as
vacuously true. For example, if I know that A won’t topple I can assert: if A topples then I’m
a monkey’s uncle. In contexts where the conditionals are vacuously true, however, we cannot
infer ‘it’s not the case that if B toppled the green light came on’ from ‘if B toppled the red
light came on’ so the counterexample to CSO fails.

22One can similarly show that CSO is appropriate.
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2.4 Conditional Logic and Semantics

I do not want to claim that these examples spell the end for Stalnaker’s the-
ory; there is still room for manoeuvre and considerations to be made in its
favour. My aim, more modestly, is to dislodge the idea that CSO and VLAS are
incontrovertible principles of conditional logic.

I would conjecture that CSO and VLAS are not accorded this status on the
basis of direct intuitions about their validity, but rather on the basis of more
holistic theoretical considerations. One point in favour of both principles is that
they are validated by a well known semantics that promises to give a general
theory of conditionals. If we are to reject this theory we had better offer an
alternative. In the following sections I’ll suggest a couple of ways be to develop
a possible world semantics, whose motivation is in much the same spirit as
Stalnaker’s, which does not validate the problematic principles.

We shall work with a toy modal propositional language, L, consisting of
the usual truth functional connectives, ¬ and ⊃ from which the other truth
functional connectives are definable, and a special binary modal connective rep-
resenting the conditional, →. A frame for L is a pair 〈W, f〉 where W is a set
of worlds and f : P(W )×W → P(W ) – f is called the ‘selection function’.23 A
model is a pair 〈F , J·K〉 where F is a frame and J·K maps propositional letters to
subsets of W . J·K extends to a function from the rest of L to P(W ) as follows:

• J¬φK = W \ JφK

• Jφ ⊃ ψK = (W \ JφK) ∪ JψK

• Jφ→ ψK = {w | f(JφK, w) ⊆ JψK}

Logics based on this semantics can described quite neatly. Here are some
principles which we shall be focusing on.

RCN if ` ψ then ` φ→ ψ

RCEA if ` φ ≡ ψ then ` (φ→ χ) ≡ (ψ → χ)

CK (φ→ (ψ ⊃ χ)) ⊃ ((φ→ ψ) ⊃ (φ→ χ))

ID φ→ φ

MP (φ→ ψ) ⊃ (φ ⊃ ψ)

C1 (φ→ ψ) ⊃ ((ψ → ⊥) ⊃ (φ→ ⊥))

CEM (φ→ ψ) ∨ (φ→ ¬ψ)

CA ((φ→ χ) ∧ (ψ → χ)) ⊃ (φ ∨ ψ → χ)

RCA (φ ∨ ψ → χ) ⊃ ((φ→ χ) ∨ (ψ → χ))

VLAS (φ→ ψ) ⊃ ((φ→ χ) ⊃ (φ ∧ ψ → χ))

23See Chellas [6].
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LT (φ→ ψ) ⊃ ((φ ∧ ψ → χ) ⊃ (φ→ χ))

CSO ((φ→ ψ) ∧ (ψ → φ) ∧ (φ→ χ)) ⊃ (ψ → χ)

The logic CK denotes the logic consisting of the rules RCN, RCEA and the axiom
CK. CK is validated in every frame, and is analagous to the smallest normal
modal logic K.24 Indeed, we can consider it as a multi-modal logic in which φ→
is a normal modal operator for each substitution of φ.

Stalnaker’s logic C2 includes all of the above principles, and Lewis all except
for CEM. Stalnaker guarantees this by placing further constraints on the function
f , namely:

F1. w ∈ f(A,w) whenever w ∈ A

F2. f(A,w) ⊆ A

F3. f(A,w) ⊆ {x} for some x

F4. if f(A,w) ⊆ B and f(B, x) ⊆ A then f(A,w) = f(B,w)

F1 ensures the validity of MP, F2 ensures ID, F3 ensures CEM and F4 ensures the
weakened transitivity axiom, CSO. F4 also guarantees that the weaker principles
CA, RCA, LT and VLAS are valid.25 In the presence of F3 we can modify the
semantics in to Stalnaker’s original form so that f maps us from a world, w,
and a set of worlds, A, to a single possible world (namely x if f(A,w) = {x} in
the general semantics) or the unique impossible world λ (if f(A,w) = ∅) in the
general semantics) at which every sentence is stipulated to be true.

In the next sections we shall focus on two problems with Stalnaker’s seman-
tics. Both, I argue, require relaxing the constraint F4 and giving up CSO. The
first problem is that the relevant aspects of similarity rarely ever pick out a
unique world maximally similar to the actual world. While Lewis and others
have given up constraint F3 in order to accommodate this, this strategy has
recently been shown to give the wrong predictions in non-deterministic worlds.
I shall argue that the best way to accommodate these issues is to keep F3 and
relax F4 instead. The second problem is that Stalnaker’s semantics validates
CSO and therefore cannot accommodate the putative counterexamples we have
described for subjunctives and indicatives.

2.4.1 Non-determinism

For us it is the last restriction, F4, that is responsible for the problematic
principles we have been considering. On Stalnaker’s preferred reading f(A, x)
denotes the closest world to x at which A is true: f(A, x) is a a world in which

24As with K we use the same name for the logic and its characteristic axiom.
25Stalnaker also stipulates that f(A,w) = ∅ only if A = ∅. This is there for a technical

reason: it ensures that the notion of epistemic possibility can be modelled by a universal
accessibility relation. However, since any reasonable notion of epistemic necessity will not
iterate in an S5 fashion this constraint does not seem to be particularly motivated and I shall
ignore it in what follows.
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A is true but which differs minimally from x in respects of law and particular
fact. F4 states that if the closest A world is a B world and if the closest B world
is an A world then the closest A world is the closest B world. This principle
ought to be obviously true if we are thinking of f(A, x) as denoting the closest
A world to x, where ‘closeness’ here denotes an independent ordering that does
not depend on the proposition A being evaluated.

However, there is a well known objection to Stalnaker’s semantics. Why
should there be a unique closest world at which A is true? Surely there could
be multiple worlds equally close with respect to the relevant factors? For this
reason Lewis drops condition F3 in the general semantics and allows f(A, x) to
sometimes denote a set with two or more members.26 I shall focus on the case
of counterfactuals in what follows, since that is how the debate has been framed
(although, as before, the discussion generalises to indicatives.)

Lewis’s response involves relinquishing the principle CEM, a principle I take
to be highly desirable (although this is not the place to defend it.) This is prob-
lematic for those moved by the kinds of epistemological considerations outlined
here since CEM is probabilistically valid given CP∅.27

There are, however, more pressing problems with Lewis’s response. Accord-
ing to Lewis, a conditional is false if any of the closest antecedent worlds is
not a consequent world. However a number of authors (Hawthorne [13], Hajek
[11]) have noted that if the laws are chancy, as predicted by quantum mechan-
ics say, there will be, among the closest worlds, all kinds of wild possibilities.
For example, worlds where a plate is dropped and, instead of hitting the floor,
floats upwards, represent no more of a departure from actual laws than a world
in which it falls and hits the ground. The claim that the plate would break if
dropped seems to be highly probable, even granting the laws are this way, be-
cause although not impossible it is very improbable that the plate would float
upwards. The claim that the plate would break if dropped seems to be at least
as probable as the claim that the plate will break, asserted after the plate is
dropped and before it breaks (or floats upwards!) Lewis’s analysis, however,
predicts that this conditional is outright false: if the plate floats upward in any
of the closest worlds then the counterfactual is false. If I am certain that among
the closest worlds there are worlds where the plate floats upwards, as I should
be if I believe quantum mechanics, I should reject the claim that the plate would
break if dropped – I should be certain it is false.

There is, however, another way to respond to the problem for Stalnaker’s
theory: instead of giving up the constraint F3 relinquish F4.28 We agree with

26This modification does not address the problem of there being no closest world due to
there being an infinite succession of closer and closer worlds. Lewis addresses this in other
papers.

27For example, if φ is consistent, Pr((φ → ψ) ∨ (φ → ¬ψ)) = Pr(φ → ψ) + Pr(φ →
¬ψ) − Pr((φ → ψ) ∧ (φ → ¬ψ)) = Pr(ψ | φ) + Pr(¬ψ | φ) − 0 = 1 for every rational initial
prior Pr, and therefore = 1 for every informed prior with Cr(φ) > 0 too.

28This thought is inspired by a suggestion due to Moritz Schulz which I heard in a talk
he gave in 2007 ([29].) Schulz’s theory places a lot of emphasis on the theory of arbitrary
reference and epsilon terms which I am not following closely here. However, the basic idea
– that f(A, x) represents a randomly selected world from the closest A worlds to x – is the
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Lewis that, in the relevant sense of closeness (keeping in accordance with par-
ticular matter of fact, respecting natural laws, and so on) there will typically
be multiple closest worlds to the actual world at which a proposition is true.
However, we agree with Stalnaker that there’s a particular way things would
have turned out if A had obtained. (Lewis’s position that there is no particular
way things would have gone had A obtained seems to me to be quite incredible
– after all, just look what happens when A does happen: things go a particular
way!) In order to evaluate a conditional, A → B, in such a case, we look to
the world that would have obtained if A had obtained, and this will be a single
member of this set.

On this proposal we therefore sever the straightforward connection between
the function f(A, x), which is used in the formal semantics, and counterfactual
similarity. f(A, x) represents the world that would have obtained instead of
x if A had obtained. If there is exactly one closest world, w, then the way
things would have gone had A obtained is just w. However, when there are
multiple worlds that are equally close in the relevant respects (for example, if
the laws are chancy) then the way things would have gone had A obtained is
not determined by the closeness facts. If, for example, x is a chancy world,
then there will be an element of randomness – the way things would have gone
will certainly be one of the closest worlds, but due to the element of chance
this cannot be deterministically calculated from non-counterfactual facts about
what’s happened at x and closeness facts. Thus, according to this alternative,
the world f(A, x) which is selected is not determined by the closeness facts –
it is primitively counterfactual and it is an irreducibly chancy matter which,
among the closest worlds, this world is.

It is clear why this does better than Lewis’s theory. On this semantics
the claim that the plate would break if dropped is highly probable, and is as
assertable as anything is in a quantum world, whereas for Lewis it is false with
probability 1. Even for Stalnaker, it seems, the conditional is indeterminate
with probability one, thus also unassertable.

Finally, this semantics also allows us to see why F4 is refuted and why CSO
is invalid. Suppose that the closest A worlds are B worlds and that the closest
B worlds are A worlds. It follows by simple facts about closesness that the
closest A worlds are the closest B worlds (this is what motivates principle F4
in the Lewis/Stalnaker semantics.) Call the set of closest A/B worlds X. Now
note that the member of X that would have obtained if A had obtained is
non-deterministically selected from X and thus might not be the same as the
member of X that would have obtained had B obtained. Thus f(A, x) need not
be the same as f(B, x) in cases like this, even though the world that would have
obtained if A had obtained, f(A, x), is a B world, since by hypothesis all the
closest A worlds are B worlds, and also the world that would have obtained if
B had obtained, f(B, x), is an A world, since we know the closest B worlds are
A worlds. In other words, f(A, x) ∈ B and f(B, x) ∈ A even though f(A, x)

same. Schulz, however, prefers to add the constraint F4 by brute force, even though it does
not appear to be motivated by his semantics.
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may not be identical to f(B, x).
The proposal extends to indicatives in a similar way. f(A, x) represents the

way the world will turn out if A happens. Even on an epistemic interpretation
of ‘closeness’ there will be cases where there are multiple equally close worlds.
In these cases the world that will obtain if A obtains is one of these worlds, but
not any particular one with evidential probability 1.

2.4.2 Determinism

The counterexamples by Tichý, Pollock, Martensson, Tooley and Ahmed all
appear to be compatible with determinism so it is unclear whether the suggestion
above is the best way to accommodate these examples. A number of people have
suggested that we instead relativise the notion of closeness to the antecedent of
the conditional (see Ahmed [2] and Noordhof [25].) According to this proposal
a conditional A→ B is true only if B is true at the A-worlds which are closest
according to an ordering determined in part by A.

As an example of an antecedent relative theory Ahmed [2] points us to
the theory of Edgington [9] which is tied to a tradition of taking causation as
primitive in the analysis of counterfactuals (see also Kvart [16], Martensson [20],
Schaffer [28], [9] all of whom seem to endorse antecedent relativity of some sort
or other.) In listing what counts for closeness Schaffer, who is quite up front
about the invalidity of CSO, writes that among other things we should try to
“maximize the region of perfect match, from those regions causally independent
of whether or not the antecedent obtains.”29

In fact the thought that the similarity relation depends on the antecedent is
quite pervasive in the literature on counterfactuals for the reason that on most
accounts similarity depends on the time of the antecedent. On such accounts
a subjunctive conditional A → C is true when and only when C is true at the
A-worlds that are like the actual world in matters of particular fact up to the
antecedent time and continue according to the causal laws after the antecedent
time. According to Bennett this ‘general idea has been accepted by all analysts
of subjunctive conditionals in the ‘worlds’ tradition, and by most others as well.’
[4] p198.30

The consensus seems to be that differences of particular fact after the an-
tecedent time count for very little compared to differences before the antecedent
time, when it comes to counterfactual similarity. This fact is nicely demon-
strated by Fine’s example:

If Nixon had pressed the button, then there would have been a nuclear
holocaust.

Worlds where there has been a nuclear holocaust are dramatically different from
our own, although the difference manifests itself only after the antecedent time.

29See also Cross [7] for a discussion of the formal semantics (albeit from an unsympathetic
perspective.)

30Whether this idea makes its way into the semantics endorsed by these theorists is another
matter. For Lewis, for example, the dependence on an antecedent time is provided by the
pragmatics. See Bennett [4] §118 for discussion.
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Nonetheless, in the relevant sense the closest worlds where Nixon pressed the
button are worlds where there is a nuclear holocaust – this is possible because
the relevant notion of closeness is one which places little weight to differences
of particular fact after the antecedent time. This notion of closeness is one that
varies from antecedent to antecedent.

The upshot is that if we interpret f(A, x) in the formal semantics as ‘the
A-closest A-world’, where ‘A-closesness’ may depend on A, constraints F1-F3
remain intact while the problematic constraint F4 is no longer forced on us and
CSO is not validated.

Stalnaker considers this response to Tichý’s counterexample to CSO, writ-
ing: ‘call a selection function which is based on some antecedent-independent
ordering of possible worlds a regular selection function. The issue is whether one
should describe the situation in terms of a single irregular selection function, or
in terms of a contextual shifts from one regular selection function to another.’
Stalnaker concedes, however, that the issue may be in part a matter of prefer-
ence, not substance, regarding how best to distribute the burden of explanation
between pragmatics and semantics. If this is so then, far from being the core
of the Stalnakerian theory of conditionals, the principle CSO is more of a side
issue. If CSO is a casualty of adopting a systematic epistemology of conditional
statements then perhaps this is not so bad after all.

2.4.3 Conditional Logic without Stalnaker’s constraint

What happens if we remove F4? Call the class of frames in which the selection
function satisfies F1-F3 C. Then C is sound and complete with respect to the
logic CK with the addition of the principles ID, MP and CEM.31 If we additionally
stipulate that the frames satisfy

F5. If f(A, x) ⊆ B and f(B, x) = ∅, f(A, x) = ∅.

then we also validate C1.32 Note, however, that one can satisfy F5 without
satisfying F4, and indeed one can have all the principles listed except for CSO
in a semantics of the kind described.

The logic CK consists of the principles CK, RCN and RCEA. Call the result
of adding ID, MP and CEM to the logic CK, L1 and let L2 be the logic resulting
from adding C1 to L1. There is a sense in which L1 is simply the logic you get
when you drop CSO from Stalnaker’s logic since L1+ CSO has exactly the same
theorem’s as Stalnaker’s logic C2.33

31This is a simple application of the canonical model style of argument outlined in Chellas
[6].

32C1 is a principle governing the conditions under which conditionals are vacuously. F5 is
roughly equivalent to saying that f(A, x) = ∅ just in case A is true in none of the worlds
accessible to x (where y is accessible to x iff f({y}, x) 6= ∅.)

33Lewis’s axiomatisation of C2 consists of L1, CSO and the complicated principle (A∨B →
A) ∨ (A ∨ B → B) ∨ ((A ∨ B → C) ≡ (A → C) ∧ (B → C)). The last principle is actually
redundant (i.e. is provable in L1+CSO) but does not appear to be a theorem of L1 (although
it is a theorem of L2.)
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In order to compare L2 to other systems of conditional logic note that, for
example, L2 is the result of replacing VLAS with CEM in Pollock’s logic of
conditionals SS. Removing CEM from L2 and adding CSO, the principle ((φ→
ψ)∧¬(φ→ ¬χ))→ (φ∧χ→ ψ) (a strengthening of VLAS) and φ∧ψ → (φ→ ψ)
(which is already theorem of L2) results in Lewis’s VC (see [3].)

It is worth pointing out that adding any of CSO, CA, RCA, VLAS or LT to
L2 results in a system equivalent to Stalnaker’s. Thus out of logics consisting of
the principles we have listed, L2 is the strongest system containing CEM which
does not collapse into Stalnaker’s.

3 The tenability of CP

In this section we will construct a model for CP∅ and CP within the logic L2.
While models of CP∅ based on the semantics of section 2.4.1 seem worth in-
vestigating we shall limit our attention here to models based on the semantics
we discussed in section 2.4.2, utilising an antecedent relative closeness ordering.
We begin by defining the kind of model we are aiming for

Definition 3.0.1. A probabilistic frame is a quintuple 〈W,F, P, f, λ〉 where

• W is a set (the set of worlds.)

• F ⊂ P(W ) is a σ-algebra, i.e., a set containing the empty-set which is
closed under complements in W and countable unions which is also closed
under the operation X ⇒ Y := {w | f(X,w) ∈ Y }.

• P is a non-empty set of probability functions over F . I.e. Pr : F → [0, 1]
for Pr ∈ P .

• f : P(W )×W →W is called the selection function.

• λ 6∈W is the impossible world.

A probabilistic frame is adequate iff for every Pr ∈ P , A,B ∈ F , Pr(A⇒ B) =
Pr(B | A) whenever Pr(A) > 0. Here A⇒ B := {w | f(A,w) ∈ B}. (It follows
that in an adequate frame A ⇒ B is measurable if A and B are, otherwise the
left-hand side of this equation would not be defined.)

In effect an adequate probabilistic frame consists of an interpretation of the
conditional plus a set of ur-priors (the set P ) which obey CP∅ on measurable
sets. The more interesting frames are ones in which P represents a rich set of
probability functions.

Intuitively there are two kinds of propositions: those which are not hypothet-
ical at all, such as, for example, the proposition that a particular coin, C, landed
heads, and those which are hypothetical, such as the proposition that the if C
is flipped it will land heads. The latter kind of proposition is often associated
with a curious epistemic phenomenon: it does not seem to be possible to know
whether the latter proposition is true if the coin isn’t flipped. For example, if you
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accept conditional excluded middle then either C will land heads if it is flipped,
or it will land tails, but in worlds where the coin is not flipped it is impossible
to obtain further evidence to settle the question of which way it would land
if flipped. Philosophers subscribing to the law of conditional excluded middle
have conjectured that hypothetical propositions like this are a special source of
indeterminacy (e.g. [34].) Whether or not this is so we can certainly agree that
we must be ignorant in the scenario described, much as we would be in the face
of vagueness or indeterminacy. In our model the non-hypothetical (completely
determinate) propositions are represented by a Boolean algebra B, which is a
subalgebra of a larger space of propositions, B′, consisting of all propositions
hypothetical or not. The basic intuition is that one can have any credence you
like regarding the completely determinate non-hypothetical facts, but once you
have fixed your credences in those propositions your credences over the rest
of the space of propositions is fixed. For example, if you know that C is fair
and will not be flipped, then you are forced to have a credence of a half in the
proposition that C will land heads if flipped. The situation here is similar to
the analogous situation with vague propositions. Once you know someone has a
certain borderline number of hairs, N , you are forced to be uncertain, to some
degree, in the proposition that that person is bald.

3.1 The construction

Despite the impossibility results there have been a number of results to the
effect that, under certain restrictions, one can have Stalnaker’s thesis (see for
example, van Fraassen [38], McGee [22], Stalnaker and Jeffrey [30], Kaufmann
[15], Bradley [5].) However, in general, these constructions fall short of the
full generality of a principle like CP∅ as they do not deal with certain embed-
ded conditionals. The closest thing to the project attempted here is found
in van Fraassen’s [38], where a model of CP∅ is presented. In this paper van
Fraassen provides, for each probability function, Pr, a model of the logic L1
such that Pr(A → B) = Pr(B | A) whenever Pr(A) > 0. Unfortunately
this construction is not suitable for our purposes. Van Frassen constructs a
different conditional for each choice of probability function Pr, so this con-
struction is not a satisfactory model of CP∅ except in the limiting case in which
there is only one ‘Carnapian’ ur-prior. Furthermore, it is not a model of the
general principle CP. (There are also a number of technical limitations on the
construction: (i) the construction only generates models where the number of
measurable sets is countable (ii) the semantics is not based on selection func-
tions and subsequently has an unnatural quantificational logic (for example the
principle ∀x(φ→ ψ) ⊃ (φ→ ∀xψ), when x is not free in φ, is invalid)34 (iii) the
conditional operator is not defined on unmeasurable propositions (thus given
(i), the conditional is only defined on countably many propositions) (iv) as far
as I can see van Fraassen shows that CP∅ holds over a field of sets, but not over
the σ-algebra it generates.)

34Although, since this is effectively the limit assumption, perhaps this isn’t so bad.
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In that same paper van Fraassen provides a distinct model for a restriction
of CP∅ in which the antecedent and consequent, A and B, do not involve any
conditionals themselves (see the ‘Bernoulli-Stalnaker’ models of [38].) However
van Fraassen’s construction does not allow iterated conditionals, and it validates
the undesirable logic C2. The approach here extends the idea of the ‘Bernoulli-
Stalnaker’ models to validate the full strength of CP, iterations and all.

The construction begins with an initial set of possible worlds W , which
represent maximally specific things that can be said about the world without
mentioning conditional facts – facts about what will happen if this or that hap-
pens. The set W∞ then extends this set, dividing members of W into epistemic
possibilities according to the kind of hypothetical distinctions you can make. In
the Bernoulli-Stalnaker models of van Fraassen we can think of W∞ as pairs of
members of W and well-orderings of the universe W . The well-ordering repre-
sents the closeness facts at that possible world. Even if we know exactly which
world obtains you might be ignorant about the hypothetical facts, encoded by
which well orderings obtain at that world.

Note that the space of worlds just described gives a poor representation of
the conditional facts at a world since it only well-orders the possible worlds, not
the epistemically possible worlds. What we want, rather, is a space of worlds
W∞ such that each member of W∞ determines a well-ordering of W∞, not W
(actually, in our setting it’s slightly more complicated because the ordering is
antecedent dependent.) This is potentially problematic for cardinality reasons:
W∞ cannot be the same same size as the set of well-orderings over W∞. To
solve this we restrict our attention to well-orderings of some fixed collection of
order types. For simplicity this is just ω.

Let us put this into practice. Assume that the initial set of states, W , that
do not involve conditional facts is given. The set of worlds in our model will be
the set W∞ = Wω1 = {π | π : ω1 →W}. Let B∞ = P(W∞).

Given our initial space W , define the following sequence of sets for α < ω1

• Wα = Wωα

That is, Wα represents the set of all ωα sequences of members of W . Since ωα <
ω1 whenever α < ω1 it follows that an element of Wα will be an initial section
of a member of W∞. Note also the following consequences of this definition:

• W0 = W

• Wα+1
∼= Wω

α

In what follows we shall adopt a practice of identifying products which are
isomorphic to subsets of W∞, allowing us, for example, to identify A × W∞
with a subset of W∞ whenever A is contained in some Wα.

The sets Wα for α < ω1 help us describe the measurable sets.

Definition 3.0.2. Suppose X is a set of subsets of W∞. Then cl(X) is the
closure of X under the operations of countable unions and intersections, and
complements relative to W∞.
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The measurable sets, which we shall denote F∞, can be thought of as being
approximated by an infinite sequence of σ-algebras, Fα ⊂ B∞ for α < ω1.

• F0 = {A×W∞ | A ⊆W}

• Fα+1 = cl{A0 × . . .×An ×W∞ | Ai ×W∞ ∈ Fα for 0 ≤ i ≤ n}

• Fγ = cl(
⋃
α<γ Fα)

Note that Fα+1 is generated by sets of the form A0 × . . . × An ×W∞ where
Ai ⊆Wα. Each of these generating sets consists of an ω1 sequence such that an
initial finite number of elements belong to Wα and the rest belong to W . This is,
of course, just equivalent to an ω1 sequence of elements of W whenever α < ω1:
it is just equivalent to n successive ωα-sequences of elements of W followed by
an ω1-sequence of elements of W , which is itself an ω1-sequence of elements of
W . Bearing this equivalence in mind we can see from the construction that
an arbitrary member of Fα will be of the form A ×W∞ where A ⊆ Wα. It is
straightforward to show

Proposition 3.1. Fα ⊆ Fβ if α ≤ β

Now we turn to our definition of F∞, the set of measurable sets.

Definition 3.1.1. A set A ∈ B∞ is measurable iff A ∈ Fα for some α. We
denote the set of measurable sets F∞ :=

⋃
α<ω1

Fα.

It should now become apparent why we chose the ordinal ω1 in our defini-
tions: it is due to this choice that our measurable sets are closed under countable
unions so that F∞ is a σ-algebra.

Definition 3.1.2. If A is measurable then the rank of A is the smallest α such
that A ∈ Fα. We shall write this: rank(A) = α. If A is not measurable then
rank(A) =∞.

For any ordinal α < ω1 let π[α] be the ω1 sequence starting from π’s αth
element. I.e. π[α](β) = π(α+β). For each ordinal α < ω1 and element π ∈W∞
we can define a well-ordering of W∞.

τ ≤α,π σ if and only if for some i, j ∈ ω τ = π[ωα.i], σ = π[ωα.j] and
i ≤ j.

We identify ≤∞,π arbitrarily with ≤0,π

It is now time to define the selection function for a A ∈ B∞ of rank α
(possibly identical to ∞)

f(A, π) =

{
the ‘smallest’ A-world under the ordering ≤α,π if such a world exists
λ otherwise

By the ‘smallest’ A-world I just mean a world τ such that τ is in the domain
of ≤α,π, τ ∈ A and for any other σ in the domain of ≤α,π and in A, τ ≤α,π σ.
Note that, like in Stalnaker’s semantics, f(A, π) represents the closest world to

31



π which belongs to A – the crucial difference is that the notion of closeness at
play here depends on the antecedent, A – this accords with the semantics of
section 2.4.2. Note that f(A, π) ∈ A and f(A, π) = π whenever π ∈ A. Thus
this frame validates the logic L1.

Proposition 3.2. ∅ is measurable and if A, B and A0, A1, A2, . . . are measur-
able then so is W∞ \A, A⇒ B and

⋃
nAn.

We now define the set, P , of ur-priors. For simplicity we shall assume that
W is countable so that every subset of W can be treated as a measurable set
(although it would be simple enough to drop this assumption and work with an
initial σ-algebra over W instead.) We shall show that every regular countably
additive probability function Pr on the algebra B extends to the measurable
sets over B∞. We then identify P with the set of all such probability functions
generated this way.

Suppose that Pr is a regular countably additive probability function on B.
For α ≤ ω1 we define Prα over Fα as follows.

• Pr0 = Pr

• Prα+1(A0 × . . .×An ×W∞) = Prα(A0 ×W∞) . . . P r(An ×W∞); Prα+1

extends to the rest of Fα+1 via Carathéodory’s extension theorem.

• Prγ(A) = Prα(A) when A ∈ Fα for α < γ. This extends to the rest of Fγ
by Carathéodory’s extension theorem.

Write Pr∞ for Prω1
. Observe, from the construction of Pr∞, that for any α <

ω1 and A0, . . . , Ak ⊂Wα Pr∞(A0×. . .×Ak×W∞) = Pr∞(A0×W∞)Pr∞(A1×
W∞) . . . P r∞(Ak ×W∞)

We are now in a position to prove our main theorem.

Theorem 3.3. The frame 〈W∞, F∞, P, f, λ〉 is adequate.
In particular, if Pr is a countably additive regular probability function over

W then Pr∞ ∈ P and Pr∞(A ⇒ B) = Pr∞(B | A) whenever A and B are
measurable.

Proof. Suppose that rank(A) = α so that A = A′ ×W∞ for some A′ ⊆Wα.
According to our definition π ∈ A ⇒ B if and only if the smallest A world

in the sequence (π[ωα.i])i is a B world. In other words, if and only if π[ωα.0] =
π ∈ A ∩ B or π 6∈ A but π[ωα.1] ∈ A ∩ B or π[ωα.0] 6∈ A, π[ωα.1] 6∈ A and
π[ωα.2] ∈ A ∩B or ... or π[ωα.i] 6∈ A for any i.

Let R be the set of π with f(A, π) = λ. Thus A ⇒ B = (A ∩ B) ∪ (A′ ×
(A ∩ B)) ∪ (A′ × A′ × (A ∩ B)) ∪ ... ∪ R =

⋃
n(Ā′n × (A ∩ B)) ∪ R. Here I am

using X to denote the complement of X.
Note that R ⊆ (A′)ω ×W∞ which has probability 0 whenever Pr∞(A) > 0.

Since we are calculating a union of disjoint sets we have

Pr∞(A⇒ B) =
∑
n<ω

(Pr∞(A)n·Pr∞(A∩B)) =
Pr∞(A ∩B)

1− Pr∞(A)
=
Pr∞(A ∩B)

Pr∞(A)
= Pr∞(B | A)
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It is fairly straightforward now to model CP. Let Γ be a set of propositions.
Then we now define the selection function, fΓ, for the connective→Γ as follows.

Firstly we define ≤Γ,α,π=≤α,π ∩(
⋂

Γ×
⋂

Γ). Suppose that rank(
⋂

Γ∩A) =
α.

fΓ(A, π) =

{
the ‘smallest’ A-world under the ordering ≤Γ,α,π if such a world exists
λ otherwise

The next question we must settle is: what kind of proposition could be an
agents total evidence? A natural answer is suggested by our model: propositions
that correspond to a set of possible worlds in W (i.e. a proposition of the form
A×W∞ for A ⊂W .) A proposition that carves out finer distinctions than a set
of possible worlds would is an essentially hypothetical proposition. For example,
the proposition that a certain coin will land heads if flipped is a hypothetical
proposition. It can certainly be entailed or ruled out by our evidence (for exam-
ple, if we knew that the coin was flipped and landed heads or if we knew that
the coin was flipped and landed tails.) In these cases, however, the proposition
would not be our total (i.e. our strongest) evidence; it is simply impossible, I
have argued, for our strongest evidence to be a hypothetical proposition.

If we let E be the conjunction of the evidence in Γ then our definition of
A⇒Γ B above effectively amounts to: A ∩ E ⇒ B. We shall now demonstrate
that CP holds in this model.

Theorem 3.4. If E ∈ F0 then PrE(A⇒ B) = Pr(AB | E)+Pr(Ā | E)Pr(B |
A) where PrE(·) = Pr(· | E).

Proof. Suppose that E = E′ ×W∞ where E′ ⊆W . Then in general, for any α,
and A0 . . . Ak ⊆ Wα, (A0 × . . . × Ak ×W∞) ∩ E = (A0 ∩ (E′ ×Wα)) × A1 ×
. . .×Ak ×W∞.

From theorem 3.3 we know that PrE(A ⇒ B) = ΣnPrE((A′)
n
× AB) =

1
Pr(E)ΣnPr((Ā)n ×AB) ∩ E).

Expanding this sum and applying the observation above we get = 1
Pr(E) (Pr(ABE)+

Pr(ĀE)Σn(Pr(Ā)nPr(AB)) = 1
Pr(E)Pr(ABE) + 1

Pr(E)Pr(ĀE)Pr(B | A)) =

Pr(AB | E) + Pr(Ā | E)Pr(B | A)

Now since A ⇒Γ B = AE ⇒ B where E is the conjunction of Γ, we get
Pr(A ⇒Γ B) = Pr(ABE | E) + Pr(AE | E)Pr(B | AE) = Pr(B | AE) =
Pr(B | {A} ∪ Γ).

Finally we must address the matter of the principle C1 which is not validated
in this current construction, but is highly desirable. It is a simple matter, in fact,
to modify the construction to validate C1. It is sufficient merely to ensure that
the domain of ≤α,π, which we shall write dom(≤α,π), is the same as the domain
of ≤β,π for any α and β. For each world, π, let Dπ be the union

⋃
α dom(≤α,π).

Then, for each α simply add all the elements of Dπ \dom(≤α,π) on to the end of
the ordering ≤α,π in some order or other, it does not matter which, to make a
longer ordering whose domain is Dπ. The probability calculation goes through
as in theorem 3.3 except in this case R denotes the set of worlds, π, where none
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of the first ω worlds (in the ≤α,π ordering) is an antecedent world; as before
this set has measure zero.

3.2 A small refinement of Hajek and Hall’s theorem

Here we weaken the assumption CSO of [12] to VLAS. While VLAS and CSO are
equivalent in L2, VLAS is strictly weaker in L1. Note that in the other direction
CSO entails VLAS given CC, ID and CK.

To see that VLAS is strictly weaker in L1, here is a frame validating L1+VLAS
but which does not validate L1+CSO. Let W = N. If A contains primes then
f(A, i) = {j} where j is the smallest number ≥ i with j ∈ A, and = ∅ if there
is no such number. If A does not contain i or any primes then f(A, i) = ∅, and
if A contains i then f(A, i) = {i}. It’s simple to verify that if f(A, x) ⊆ B then
f(A∩B, x) ⊆ f(A, x), ensuring the validity of VLAS. However, let A = {2} and
B = {2, 3}, so f(A, 1) = ∅ and f(B, 1) = {2}. So f(A, 1) 6= f(B, 1) even though
f(A, 1) ⊆ B and f(B, 1) ⊆ A.

Theorem 3.5. Suppose that CP∅ holds for at least one ur-prior, Pr, and that
the following facts are true of the model

MP A ∩ (A→ B) ⊆ B

CC (A→ B) ∩ (A→ C) ⊆ (A→ (B ∩ C)

VLAS ((A→ B) ∩ (A→ C)) ⊆ ((A ∩B)→ C)

Then there are no more than two disjoint consistent propositions.

Proof. Suppose AB, AB̄ and Ā are three disjoint consistent propositions. They
therefore all have positive probability by the regularity assumption. Let C =
A ∪ (A→ B). Now note that the following chain of entailments hold (i.e. each
proposition is a subset of the next):

1. C → AB

2. ⊆ (C → AB) ∩ (C → A) ∩ (C → B) by CC

3. ⊆ (C → AB) ∩ (CA→ B) by VLAS

4. ⊆ (C → AB) ∩ (A→ B) since CA = A

5. ⊆ (C → AB) ∩ C since (A→ B) ⊆ C

6. ⊆ ABC by MP

So C → AB ⊆ ABC and thus Pr(C → AB) ≤ Pr(ABC). Now the argument
proceeds as in [12]:

1. Pr(AB | C) ≤ Pr(ABC), by CP∅

2. So Pr(C) = 1 by probability theory.
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3. Pr(Ā ∩ (A→ B̄)) = 0 by some fiddling (see P5 in [12].)

4. Pr(AB̄) = Pr(A ∩ (A→ B̄) = Pr(A→ B̄) by 3 and MP.

5. Pr(B̄ | A) = Pr(ĀB), i.e. Pr(AB̄) = Pr(A)(AB̄) which is impossible
since Pr(A) < 1 and Pr(AB̄) > 0.

In fact, both the Hajek and Hall result, Stalnaker’s and the above can be
seen as a special instance of an observation Stalnaker makes in [33].

Consider the following rule of proof:

RS If ` (φ→ ψ) ⊃ φ then ` φ.

If L is conditional logic that is, in a sense, not only sound but ‘complete’ for CP∅
then SR must be an admissible rule in the sense of Lorenzen: i.e. the result of
closing L under RS leaves you with L again, (or, in other words, RS is a derived
rule of the logic.)

Theorem 3.6. Assuming MP, RS is probabilistically valid in the sense that it
preserves probability 1 in any model where Pr(A→ B) = Pr(B | A), stipulating
that Pr(B | A) = 1 when Pr(A) = 0.

Proof. Suppose that Pr((A→ B) ⊃ A) = 1. Then Pr(A→ B) ≤ Pr(A∩ (A→
B)) by probability theory, which is ≤ Pr(A ∩B) by MP.

Since Pr(A → B) = Pr(B | A), Pr(B | A) ≤ Pr(A ∩ B) so that Pr(A) =
1

However, RS is not admissible in C2, nor MP+CC+CSO, nor MP+CC+VLAS.
In the former case the system you get by closing under RS collapses → into the
material conditional (which is incompatible with CP∅ and the existence of three
disjoint consistent propositions), and similarly for the latter two systems if we
add CEM or (φ ∧ ψ) ⊃ (φ → ψ) to either (which are both guaranteed by CP∅
anyway.)35
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